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Abstract—Consensus algorithms have generated a lot of interest
due to their ability to compute globally relevant statistics by only
exploiting local communications among sensors. However, when
implemented over wireless sensor networks, the inherent iterative
nature of consensus algorithms may cause a large energy con-
sumption. Hence, to make consensus algorithms really appealing
in sensor networks, it is necessary to minimize the energy neces-
sary to reach a consensus, within a given accuracy. We propose a
method to optimize the network topology and the power allocation
over each active link in order to minimize the energy consumption.
We consider two network models: a deterministic model, where
the nodes are located arbitrarily but their positions are known,
and a random model, where the network topology is modeled as
a random geometric graph (RGG). In the first case, we show how
to convert the topology optimization problem, which is inherently
combinatorial, into a parametric convex problem, solvable with
efficient algorithms. In the second case, we optimize the power
transmitted by each node, exploiting the asymptotic distributions
of the eigenvalues of the adjacency matrix of an RGG. We further
show that the optimal power can be found as the solution of a
convex problem. The theoretical findings are corroborated with
extensive simulation results.

Index Terms—Consensus algorithms, minimum energy con-
sumption, random graphs, sensor networks, topology control.

I. INTRODUCTION

A VERAGE consensus algorithms have received consider-
able attention in recent years because of their ability to

enable globally optimal decisions using only local exchange of
information among nearby nodes [1]–[3]. The price paid for
this simplicity and the underlying decentralized philosophy is
that consensus algorithms are inherently iterative. As a con-
sequence, the implementation of consensus algorithms over a
wireless sensor network (WSN) requires an iterated exchange
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of data among the nodes, which might cause an excessive en-
ergy consumption. This must be contrasted with a centralized
strategy where there is a sink node that, after collecting all the
observations from the sensors (perhaps over multiple hops), is
virtually able to compute the desired statistic in a single shot.
Hence, to make consensus algorithms practically appealing in
a sensor network context, it is necessary to minimize the en-
ergy consumption necessary to reach consensus. Clearly, the
network topology plays a fundamental role in determining the
convergence rate [4]. It is well known that, as the network con-
nectivity increases, so does the rate of convergence. However,
having a densely connected network requires a high power con-
sumption to guarantee reliable direct links between many nodes.
In principle, having a fully connected network is equivalent to
having as many sink nodes as sensors, so that the convergence
time of fully connected networks is minimum. However, the
power consumption necessary to maintain a fully connected net-
work is also maximum. On the other hand, a minimally con-
nected network entails low power consumption to maintain a
few links, but, at the same time, it requires a large convergence
time. Since what really matters in a WSN is the overall power
spent to achieve consensus, this paper addresses the problem
of finding the optimal network topology that minimizes this
overall power consumption, taking into account convergence
time and transmit power necessary to establish reliable links
jointly. The search for the optimal topology is, per se, a combi-
natorial problem whose solution becomes prohibitive even for
small scale networks. Nevertheless, we will present a relaxation
technique that converts the problem into a convex problem, with
minimum performance loss.

If the links among the nodes are symmetric, or, equivalently,
if the graph describing the network topology is undirected, the
convergence rate can be lower bounded through the so called
algebraic connectivity, defined as the second smallest eigen-
value of the graph Laplacian [5]. For this reason, there have
been works aimed at maximizing the algebraic connectivity of
a given undirected graph by a suitable choice of the weights as-
sociated to each edge [6], [7]. Alternatively, in [8] it was shown
how some network topologies, such as small world graphs, can
greatly increase the convergence rate. In [9], the authors show
that nonbipartite Ramanujan graphs constitute a class of topolo-
gies maximizing the convergence rate. In [10] it was shown how
to add edges from a given set to a graph in order to maximize its
algebraic connectivity. Other works, for example [11], proposed
strategies to improve the convergence rate of gossip algorithms
through geographic routing.
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However, in all these works, the focus is always on conver-
gence time and there is no cost associated with the establish-
ment of the graph topology. Conversely, in our work, since the
graph represents a real network, we consider as the optimiza-
tion metric the power consumption necessary to maintain re-
liable communication links among the nodes, taking into ac-
count the radio propagation model, multiplied by the number of
iterations necessary to achieve consensus. From this perspec-
tive, enforcing a small world, scale-free, or Ramanujan graph
topology may not be the best choice for a wireless network,
whose topology should depend on the application at hand as
well as on the propagation model.

In the wireless communication network context, there have
been works on optimizing the network topology in order to min-
imize the power consumption necessary to guarantee connec-
tivity, e.g., [12], [13]. These works concentrate on the communi-
cation task and do not make any specific reference to the running
application. However, it is now well established, in the sensor
network context, that, whenever possible, an efficient wireless
sensor network design should take into account the specific goal
of the sensor network [14]. For this reason, we focus on the
achievement of consensus in a WSN. It is well known that one
of the most crucial parameters in WSNs is energy consumption,
because in many contexts it is hard to recharge the batteries or
scavenge energy from the environment. For this reason, in most
applications, minimizing energy consumption is more appro-
priate than minimizing convergence time (although, there are
important applications where the latter could be more impor-
tant). In [15], the minimum energy consumption problem was
studied, assuming a common transmit power. As shown in [15],
there typically is an optimum power that minimizes the energy
necessary to achieve consensus within a prescribed accuracy.

In this work, we generalize the initial idea suggested in
[15] and we propose a method for optimizing the network
topology and the power allocation across every link in order
to minimize the energy necessary to achieve consensus. We
consider two classes of networks: a) deterministic topologies,
with arbitrary, but known, node locations, and b) random
geometries, with unknown node locations, modeled as random
variables. In the deterministic case, we optimize both topology
and power allocation. Differently from [6], we do not assume
any prior topology, as the topology comes out as a result of the
optimization. Topology optimization is, in general, a combina-
torial problem and hence an NP-hard problem (recall that an
undirected graph composed of nodes may assume
topologies). To tackle this issue, we propose a relaxation tech-
nique that allows us to formulate topology optimization as a
convex parametric problem. Then, we show that the effect of
this relaxation on the performance is negligible.

In the random topology case, where the internode distances
are unknown, we show how to optimize the single (common)
transmit power, modeling the network topology as a random
geometric graph, a model suitable for wireless networks. We
provide both theoretical and simulation results, exploiting the
theory of the eigenvalues of random geometric graphs.

The paper is organized as follows. In Section II, we briefly re-
view the consensus algorithm. In Section III, we introduce our
communication model and formulate the optimization problem.

Section IV is devoted to topology optimization for arbitrary
networks. In Section V, we start by providing a closed form
expression, albeit approximate, for the algebraic connectivity
of a random geometric graph. Then we use this expression to
proceed with the topology optimization for random geometric
graphs. The analytical findings are corroborated with extensive
simulation results.

II. BRIEF REVIEW OF CONSENSUS ALGORITHMS

Let us consider a wireless network composed of sensors.
The network topology can be represented as an undirected graph

where denotes the set of vertices (nodes)
and is the set of bidirectional edges (links)

connecting and . Furthermore, let be the
-dimensional symmetric adjacency matrix of the graph ,

with elements if and otherwise. Ac-
cording to this notation and assuming no self-loops, i.e.,

, the degree of node is defined as

. The degree matrix is defined as the di-

agonal matrix whose diagonal entry is . Let
denote the set of neighbors of node , so that 1.
The Laplacian matrix of the graph is the symmetric
matrix , whose entries are

(1)

Given a set of measurements , collected by node , for
, the goal of the consensus algorithm is to allow

every node to compute a globally optimal function of the mea-
surements, say , through a decentralized mechanism that does
not require the presence of a sink node, but builds on the interac-
tion among nearby nodes only. Let us consider, for simplicity,
the case where is the average of the measurements. In this
case, reaching an average consensus can be seen as the mini-
mization of the disagreement between the states of the inter-
acting nodes. One of the nice properties of the Laplacian is that
the disagreement can be expressed as a quadratic form built on
the Laplacian [16]

(2)

An important property of the Laplacian is that it has, by con-
struction, a zero eigenvalue, whose multiplicity is equal to the
number of connected components of a graph. Hence, a graph is
connected if its zero eigenvalue has multiplicity one [5]. Fur-
thermore, if the graph is connected, the eigenvector associated
with the null eigenvalue is the vector , composed of all ones.

The minimization of the quadratic form in (2) can be achieved
using a simple steepest descent technique. In continuous time,
the minimum of (2) can be reached through the following up-
dating rule [2]:

(3)

1By we denote the cardinality of the set.
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initialized with 2. By construction, the eigenvalues
of are all nonnegative. Hence, the convergence of (3) is guar-
anteed. In particular, if the graph is connected, the state vector

in (3) converges to the projection of the initial state onto
the nullspace of , spanned by the vector , i.e., [2]

(4)

This corresponds to having all the nodes converging
to a consensus on the average of the initial observa-
tions . Moreover, the convergence
rate is lower bounded by the slowest decaying mode,
i.e., by the second smallest eigenvalue of ,
also known as the algebraic connectivity of the graph.
More specifically, if the graph is connected, the dynamic
system (3) converges to consensus exponentially [2], i.e.,

, with .
Defining the disagreement vector as , we
can write . As a consequence,
the convergence time can be defined (see also [2]) as the
time necessary for the slowest mode of the dynamical system
(3) to be reduced by a factor , i.e., the time for which

. Hence, we can set

(5)

III. OPTIMIZATION CRITERION

It is well known that one of the most critical issues in WSN is
energy consumption. Neglecting for simplicity the power spent
for processing operations with respect to the power to be used
to enable wireless communications, the overall power spent to
reach consensus is the product between the sum of the power

necessary to establish the communication links among the
nodes and the number of iterations necessary to achieve
consensus. The exchange of information among the nodes is
supposed to take place in the presence of a slotted system, with a
medium access control (MAC) mechanism that prevents packet
collisions. Denoting by the duration of a time slot unit, the
number of iterations is then approximately3 .

Introducing the power coefficients , denoting the
power used by node to transmit to node with , and
the binary coefficients assessing the presence of a
link between nodes and or not , the power spent by
the whole network in each iteration is then .
Using (5), our goal is to minimize the following performance
metric:

(6)

2The discrete-time counterpart of (3) is [2]

where is a parameter chosen so as to ensure that no eigenvalue of is greater
than one in modulus.

3We neglect rounding errors, which tend to vanish if the duration of the up-
dating time slot is small with respect to the convergence time.

where incorporates all irrelevant constants. This metric is
proportional to the integral of power consumption with respect
to time and then it represents an energy consumption. In (6),
we have made explicit the dependence of the Laplacian on
the vector containing all binary coefficients , since
finding these coefficients is the goal of our optimization. More
specifically, our goal is to find the set of active links, i.e., the
nonzero coefficients , and the powers that minimize (6),
under the constraint of maintaining network connectivity, which
entails . The problem can then be formulated as
follows:

(7)

where is an arbitrarily small positive constant used to prevent
the algebraic connectivity from going to zero, which would cor-
respond to a disconnected network and is the vector with en-
tries .

Since the topology coefficients are binary variables, is
a combinatorial problem, with complexity increasing with the
size of the network as . Hence, its solution, for
medium/large scale networks is prohibitive. Our objective is to
modify in order to turn it into a convex problem, with neg-
ligible performance losses.

A first simplification comes from observing that the coef-
ficients and are not independent of each other. Their
dependence is indeed a consequence of the radio propagation
model. In this work, given the complexity of the topology op-
timization problem, we assume a fairly simple communication
model. We state that there is a link between nodes and , and
then , if the signal–to-noise ratio at the receiver
node , when node transmits, exceeds a minimum value ,
i.e., . If we denote by the power received by
node when node transmits, and by the noise power, as-
sumed for simplicity to be the same at each receiving node, we
have , if , or otherwise .
Assuming flat fading channel modeling, we use the following
propagation model:

(8)

where is the distance between nodes and , and is the
path loss exponent. The parameter plays the role of a scaling
factor or reference distance, and typically corresponds to the so
called Fraunhofer distance, such that, if , the receiver
is in the transmit antenna far-field, where the received power
is inversely proportional to ; conversely, if , the
receiver is in the transmit antenna near-field, where the received
power is approximately equal to the transmitted one. The unity
term in the denominator of (8) is used to avoid the unrealistic
situation in which the received power could be greater than the
transmitted one. Given the propagation model (8), the relation
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between the power coefficients and the topology coefficients
is then

(9)

In the following sections we will show how to relax this rela-
tion in order to simplify the solution of the optimal topology
control problem. We will consider two scenarios: a) a deter-
ministic topology, with arbitrary node geometry, where the dis-
tances between the nodes are known, and b) a random topology,
where the positions of the nodes are unknown and modeled
as random variables. In case a), since the distances among the
nodes are known, we optimize the power allocated to each link.
This strategy is also instrumental in determining the topology,
which is equivalent to finding the entries of
the adjacency matrix. Conversely, in the random topology case,
since the distances are not known, we assume broadcast com-
munications, and look for the optimization of the coverage ra-
dius of each node. The deterministic topology case will be the
subject of Section IV, whereas the random case will be studied
in Section V.

IV. OPTIMAL TOPOLOGY AND POWER ALLOCATION FOR

ARBITRARY NETWORKS

In the case where the distances between the nodes are known,
the optimization criterion amounts to solving problem ,
which involves a combinatorial strategy that makes the problem
numerically very hard to solve, especially for medium/large
scale networks. The relation (9) reduces the set of unknowns
to the set , but the problem still retains most of its difficul-
ties. To make problem to be numerically tractable, we
introduce a first relaxation so that, instead of requiring to
be binary, we assume to be a real variable belonging to
the interval . Under this assumption, problem is
not combinatorial anymore, but it is still a nontrivial nonlinear
constrained problem. The first important contribution of this
paper is to propose a relaxation technique that transforms the
previous problem into a convex problem that can be solved with
well established and efficient numerical tools. We achieve this
goal by first introducing the following relationship between the
coefficients and the distances :

(10)

where is a positive coefficient and is the coverage radius,
which depends on the transmit power. According to (10),
is close to one when node is within the coverage radius of
node , i.e., , whereas is close to zero, when

. The switching from zero to one can be made steeper
by increasing the value of .

Given the propagation model (8), the coverage radius is
related to the power and the minimum power required for
reliable communication , as follows:

(11)

Plugging (11) in (10), the coefficients can be written explic-
itly in terms of the power coefficients as follows:

(12)

This relation can be also inverted to find the coefficients as
a function of , as follows:

(13)

with . Expression (12) becomes our relaxed ver-
sion of (9) and it allows us to reduce the set of variables to the
only power vector . Consequently, problem can be re-
laxed into the following problem:

(14)

where, thanks to (12), the Laplacian is now written explicitly
in terms of the power coefficients . In principle, the last in-
equality in (14) makes any link feasible. But this does not imply
that the final network will be fully connected, because some co-
efficients might turn out to be equal zero, implying that the
link between node and is not active. The first important re-
sult, related to the solution of (14), is the following.

Theorem 1: Given the propagation model in (8), using the
relations (12) between the topology coefficients and the
power terms , problem is a convex-concave fractional
problem if .

Proof: Let us consider the objective function in .
The numerator of is clearly a convex function of . We
only have to prove the concavity of the algebraic connectivity

with respect to the transmit powers. As a first step,
we prove that is a concave function of . Then, we
use this to show that is a concave function of .

(i) is a concave function of : We compute the
second-order derivative of the function in (12) with respect to

(15)

where the constants and are given by

Note that ; since , we also have
. From (15), we see that, if , the second-order

derivative is always nonpositive and then is a concave
function of .

(ii) is concave in : Exploiting the properties of the
Laplacian [16], we can write the quadratic form associated to

as in (2). From (12), we also note that each coefficient
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depends only on the corresponding link power , and not on
the other link powers. Given any pair of power vectors and

, let , with . Hence, we
have

(16)

where the inequality follows from the concavity of .
We further recall that the algebraic connectivity is the

solution of the following positive semidefinite program (SDP)
[5]:

(17)

Hence, using (16), we obtain

where the last equality follows from a majorization theorem for
eigenvalues4. Thus, the algebraic connectivity is a concave func-
tion of the vector of transmit powers. Hence, (14) is a convex-
concave fractional problem since it is the ratio of a convex and
a concave function of .

Since (14) is a convex-concave fractional problem, we can use
one of the methods that solve quasi-convex optimization prob-
lems, see, e.g., [18], [19]. For example, we can use the nonlinear
parametric formulation proposed in [19]. To do so, we introduce
the following function:

where is a real positive parameter and
. In order to find the solution of this

problem we could use the following result, proved in [19] and
[20].

Theorem 2: Let and be continuous real-valued
functions , where is a nonempty compact subset of

and . Then

4Let be Hermitian matrices, and let . Let their eigen-
values be sorted in nondecreasing order. Then the vector of eigenvalues
majorizes the vector . Since for the graph Laplacian,
it follows that . See [17, Theorem 4.3.27].

with , if, and only if

where means that for the minimum of
is taken on at .

Before applying Theorem 2, it is useful to further convert the
convex-concave optimization problem into the following
parametric problem:

(18)

By Theorem 1, is a concave function of . Hence, the
objective function in , as sum of convex functions, is a
convex function. The constraint sets are convex. Then, problem

is a convex parametric problem, whose solution is a func-
tion of the parameter that controls the tradeoff between the
global transmit power and the convergence time. Later on, we
will show how to find the optimal .

Since problem is convex, it can be solved using nu-
merically efficient convex programming tools. However, before
applying any convex tool, it is worth noticing that the feasible
set in is not compact. Hence, even if a solution exists, in
principle, it could be unreachable in finite time. To overcome
this potential drawback, we propose next an alternative formu-
lation of : Instead of looking for the set of power coeffi-
cients , and then for the , using (13), we can reformulate

so as to look directly for the variables . Then the opti-
mization problem in (18) can be rewritten in terms of vector ,
as follows:

(19)

where . We verify next that this

problem is still convex. To study the behavior of , we com-
pute the second-order derivative of , obtaining

We infer that

We note that, if , then for ,

so that , as a sum of convex functions, is convex5. Finally,
the algebraic connectivity is a concave function of

, as can be proved following the same steps as in Theorem

5Note that is the sum of functions of the single variables . Hence the
convexity of can be studied looking at the convexity of the single functions

.



	  	
27388 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 60, NO. 1, JANUARY 2012

1. Then, the optimization problem is also a convex para-
metric problem, perfectly equivalent to the original problem in
(18), since the change of variables in (13) ensures
a one-to-one mapping , for , with
image covering the problem domain in (18) (see [21, p. 130]).
Hence, assuming , with an infinitesimal posi-
tive constant so that the feasible set of (19)

is a compact convex set in , we
ensure that the set of minima of (19) is nonempty and by the con-
vexity of the problem we can deduce that all local minima are
also global. Note that since the optimization problem in (19) is
convex an optimal solution can be found via efficient numerical
tools. Furthermore, using Dinkelbach’s algorithm [19], based
on Theorem 2, we are also able to find the optimal parameter
in . More specifically, the Dinkelbach’s algorithm, applied
to our problem, proceeds through the following steps:

1. Set and let be a feasible point of , with
;

2. Set and find that solves the minimization
problem in ;

3. If , with
an arbitrarily small positive constant, stop and take as
the optimal link coefficient vector; otherwise, set

and go to step 2.
Since the topology coefficients obtained in this way are

real variables belonging to the interval , to obtain the net-
work topology, it is necessary to quantize them to convert them
into binary values, 1 or 0, indicating the presence or absence
of a link. This quantization is achieved by comparing each
with a threshold . Of course, the final topology will depend
on the threshold value. Moreover, the thresholding operation
will also affect the final result in terms of convergence time
and energy consumption. It is then of interest to check how
sensitive the final topology, as well as convergence time and
energy consumption, are to the choice of . In the ensuing
section, we present some numerical results to shed light on the
resulting topologies and their dependence on the propagation
model parameters.

A. Numerical Examples

Since our optimization procedure is based on a relaxation
technique, the first important step is to evaluate the impact of
the relaxation on the final topology and performance.

Example 1: Comparison Between Exhaustive Search and Re-
laxed Technique: We compare now the topology obtained as a
solution of the relaxed problem with the optimal graph
obtained by solving directly problem using an exhaustive
search over all possible topologies. For complexity reasons, of
course we can only perform this comparison for small scale net-
works. We consider networks of and 6 nodes.

To provide results not conditioned to a specific geographic
node deployment, we averaged the results over 100 statistically
independent realizations of the nodes locations. In each iteration
we compute the minimum energy reached using the optimal
exhaustive search over all possible topologies, and the energy

corresponding to the network topology whose coefficients
are obtained by solving problem and thresholding the

Fig. 1. Optimal average energy obtained with exhaustive search and average
energy obtained by solving the relaxed problem versus , for different
values.

Fig. 2. Ratio between the optimal energy obtained with exhaustive search and
the energy obtained by solving the proposed relaxed problem , versus ,
for different values of .

result with the threshold . In Fig. 1, we report the
average energies and versus . We can note from Fig. 1
that the loss in terms of optimal energy due to the relaxation of
the original problem is negligible (the energy loss is less than
1.7 dB).

Example 2: Impact of Thresholding Operation on Final
Topology: Clearly, the selection of the threshold plays a
role in the identification of the final topology. To evaluate the
impact of on the final topology, in Fig. 2 we report the
ratio versus for different numbers of nodes and for

. The energies are averaged over 100 independent node
realizations. We can observe from Fig. 2 that there is a wide
range of values of such that the energy loss is practically
independent of . This shows that our proposed procedure is
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Fig. 3. Optimal topologies, for different threshold values and fixed : (a) . (b) . (c) . (d) .

rather robust with respect to the choice of . It is now inter-
esting to check the effect of the threshold on the topology,
considering larger scale networks (in this case, we can only run
our algorithm, as the exhaustive search is not feasible). As an
example, in Fig. 3 we show the topologies obtained by solving
problem , for a network composed of nodes, using
different values of , for . Comparing the four cases
reported in Fig. 3, we notice that, only for very low values of
the threshold [i.e., case (d)], we appreciate a sensitive change
of topology, whereas for a large range of values of , the final
topology is practically the same. This means that the proposed
algorithm, in spite of the relaxation step and the subsequent
quantization, yields rather stable solutions.

The previous results pertain to a specific realization of the
node locations. To provide results of more general validity, in
Fig. 4, we report the average value of: a) fraction of active links

; b) ; and c) the average energy , as a function
of the threshold . The averages are carried out over 100 inde-
pendent realizations of the nodes location. From Fig. 4, we ob-
serve that there is an interval of values of (roughly, between

to ) for which we obtain a strong reduction in the
fraction of active links, with respect to the situation where there
is no threshold, still achieving nearly the same performance, in
terms of algebraic connectivity and energy consumption. This
is indeed an important result, as it shows that the relaxed algo-
rithm is weakly sensitive to the choice of .

Fig. 4. Average value of (a) fraction of active links. (b) . (c) energy
versus threshold value for .

Example 3: Impact of Propagation Parameters on Final
Topology: It is also interesting to look at the change in
topology as a function of the radio communication model. To
this end, in Fig. 5, we plot the optimal topologies achieved for
the same node locations as in Fig. 3, but pertaining to different
path loss exponents , for a given threshold. Interestingly, we
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Fig. 5. Optimal topologies, for different path loss exponents and fixed threshold : (a) . (b) . (c) . (d) .

notice, as expected, that, as the propagation loss increases (i.e.,
increases), the network tends to become more and more

sparse.
The results shown in Fig. 5 refer to a single realization of the

node positions. To draw conclusions of more general validity,
we averaged over 100 statistically independent realizations of
the node locations, for networks of 30 nodes. In Fig. 6, we report
the same performance metrics as in Fig. 4, but now as a function
of the path loss exponent , setting . From Fig. 6,
we observe that when the attenuation is high (i.e., is large),
reducing the number of links (making the topology sparser) is
more important than reducing convergence time. Conversely,
when the attenuation is low (i.e., is small), increasing network
connectivity is more important than reducing power consump-
tion. This behavior sounds reasonable and in agreement with
intuition.

V. OPTIMAL TOPOLOGY FOR RANDOM GEOMETRIC NETWORKS

In this section, we remove the assumption that the node lo-
cations are known a priori and model the network as a random
geometric graph (RGG). In such a case, the graph connectivity
properties and the convergence time can only be established in
a probabilistic sense, asymptotically, as the number of nodes
tends to infinity. We refer to [22] for the first basic result about
the convergence of consensus algorithms over random graphs
and to [23] for a more recent generalization of the convergence

Fig. 6. Average value of (a) fraction of active links. (b) . (c) energy
versus path loss for .

conditions under stochastic disturbances. As shown in [22],
the rate of convergence of consensus algorithms in the random
graph case is dictated by the expected value .
In the following, exploiting the concentration properties of the
eigenvalues of RGGs [24], [25], we will show how to relate
the convergence time to the expected value of . This link
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will be fundamental to derive the optimal coverage radius, and
then transmit power, that minimize the energy consumption
necessary to achieve consensus over RGGs. To achieve this
goal, it is fundamental to recall and extend some results about
the spectrum of RGGs.

A. RGGs

A random graph is obtained by distributing points randomly
over the -dimensional space and connecting the nodes ac-
cording to a given rule. Let be a set
of -dimensional vectors , belonging to a compact set

of , whose entries denote the coordinates of the
nodes in , and let be the Euclidean norm on . The
graph topology is captured by the adjacency matrix which,
in this case, is a random matrix. An important class of random
matrices, encompassing the adjacency matrix of our problem,
is the so-called Euclidean Random Matrix (ERM) class, intro-
duced in [26]. Given a set of points located at positions

an adjacency matrix is an ERM if its generic
entry depends only on the difference , i.e.,

, where is a measurable mapping from to .
An important subclass of ERM is given by the adjacency ma-
trices of the so-called RGGs. In such a case, the entries of
the adjacency matrix are either zero or one depending only on
the distance between nodes and , i.e.

(20)

where is the coverage radius. This is a particular case of an
ERM, corresponding to having

(21)

We will use the symbol to indicate an RGG composed
of points, with coverage radius .

The RGG model is the most appropriate to capture the
topology of a wireless network, as it basically states that there
is a link between two nodes only if they are within the coverage
radius of each other6.

Next, we recall some of the most important properties of
RGG’s, in terms of connectivity and spectrum, as they are rele-
vant to our optimization problem.

1) Connectivity: Some interesting results on the asymptotic
connectivity of random geometric graphs have been derived in a
seminal work by Gupta and Kumar [27] who proved that, given
a set of points uniformly distributed within a unit square (i.e.,

), the graph is connected almost surely if the coverage
radius behaves as

with , as . Conversely, if , the graph
is disconnected almost surely. This means that the expression

represents a threshold distance. In the following, we

6In practice, a wireless channel is also affected by fading, multipath, and shad-
owing. Hence, the presence of a link between two nodes depends on two sources
of randomness: distance and fading. In this work, we concentrate on the single
source of randomness, given by the distance between the nodes, but considering
both sources of randomness will be an interesting extension of this paper.

will often use the shorthand notation to indicate the law

, with , as . Hence, a coverage
radius behaving as represents a law that ensures
connectivity with high probability, as . We will use the
notation to indicate such a behavior.

In [4], [28], it has been shown that the degree of a RGG
of points uniformly distributed over a two-dimensional

unit torus7 is equal to

(22)

with high probability, i.e., with probability , if the radius
behaves as . This implies that an RGG tends to
behave, asymptotically, as a regular graph, if the coverage radius
is chosen so as to guarantee connectivity with high probability.

We are primarily interested in the second eigenvalue of the
Laplacian, , where is the degree matrix and is
the adjacency matrix [see (1)]. From (22), , so that
we only need to investigate the second largest eigenvalue of .
Hence, in the ensuing section, we study the spectrum of .

2) Spectrum of a Random Geometric Graph: In [24], [25],
it is shown that the eigenvalues of the adjacency matrix, or of
the transition probability matrix 8, tend to be concentrated, as
the number of nodes tend to infinity. In particular, in [24] it is
shown that the eigenvalues of the normalized adjacency matrix

of an RGG , composed of points uniformly
distributed over a unit bidimensional torus, tend to the Fourier
series coefficients of the function defined in (21)

(23)

almost surely, for all , where
. Using polar coordinates, i.e.,

and , with and ,
we obtain

This integral can be computed in closed form. Setting
and , we have

with . Furthermore, using the integral expression
for the Bessel function of the first kind of order ,

, we get

Finally, using the identity , we can make
explicit the dependence of on the index pair

(24)

7A torus geometry is typically used to get rid of border effects.
8The transition probability matrix is the adjacency matrix, normalized with

respect to the node degree, so that the th row of the adjacency matrix is divided
by the degree of node .
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Fig. 7. Verification of the inequalities in (26).

This formula allows us to rank the eigenvalues of .
In particular, we are interested in the second largest eigen-
value of . Considering that the minimum coverage radius

ensuring connectivity behaves as , i.e., it
is a vanishing function of , we can use the Taylor series
expansion of , for small . Recalling that, for small

, , we can approximate the
eigenvalues as

(25)

This expansion shows that, at least for small , the largest eigen-
value equals and occurs at , whereas the second
largest eigenvalue corresponds to the cases
and . More generally, we can check numeri-
cally that, for and , the following inequalities
hold true:

(26)

The validity of these inequalities can be verified from Fig. 7,
which shows the three terms in (26) as a function of and .

In summary, denoting the spectral radius of as
, where is the set of eigenvalues

of , it follows that

(27)

while the second largest eigenvalue of , converges
to

(28)

We are now able to derive the asymptotic expression for the
second largest eigenvalue of the normalized Laplacian

, where is the normalized degree matrix.
Because of the asymptotic property of the degree of an RGG,

Fig. 8. Asymptotic analysis and simulation results for some eigenvalues of
and for versus the transmission radius.

shown in (22), the second largest eigenvalue of tends asymp-
totically to

(29)

Thus, the algebraic connectivity of the graph can be approxi-
mated, asymptotically, as

(30)

Since the previous expressions have been derived in the
asymptotic regime, in Fig. 8 we compare the analytic formulas
for the first and the second largest eigenvalues of , as given
in (27) and (28), with the numerical results obtained by aver-
aging over 100 independent realizations of RGG’s composed
of nodes. We can notice the good agreement in
Fig. 8 between the theoretical expression for the algebraic
connectivity , given in (29), and the simulation results.

B. Minimization of the Energy Consumption: An Analytic
Approach

We can now exploit the previous analytic expressions to study
the energy minimization problem for RGG’s. In the random
topology case, since the distances are unknown, we cannot op-
timize the power associated with each link. However, we can
seek the common transmit power that minimizes energy con-
sumption. Thus, in the random setting we assume a broadcast
communication model, where each node broadcasts the value
to be shared with its neighbors. In the lack of any information
about distances among the nodes, we assume that each node uses
the same transmit power. In this case, the network topology can
be modeled as a random graph model. It can be shown [22],
[23] that the system in (3) converges to consensus almost surely,
i.e., assuming that each node has a
coverage radius so that the network is asymptotically connected
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with probability one [14]. Then the rate of convergence of the
dynamical system in (3) is given [22], [23] by .
Note that defining and using the Taylor
series expansion of 9 at the point , we
can write

(31)

Consequently, taking the expected value, we get

(32)

denoting with the variance of . But
since all central moments of order greater than one of the eigen-
values tend to zero, because of the concentration property, we
can use the approximation

(33)

As a consequence, the energy spent to achieve consensus can
now be approximated as

(34)

This is the performance metric we wish to minimize in the
random scenario, with respect to the single unknown .

In particular, using the asymptotic expression (30) for the al-
gebraic connectivity, we can introduce the following metric

(35)

We now check, numerically, that the function given in (35)
is a convex function of , for , where

, to ensure connectivity.
Let us rewrite (35) as

with and as in (30). The first–
and second–order derivatives of are, respectively

9For simplicity we drop in the dependence on .

so that is a convex increasing positive function of . Let us
now study the behavior of . Using

we obtain

with for . Moreover, since

for

we have

(36)

Observe that the first term on the right-hand side (RHS) of (36)
is always positive. Furthermore, if , the second term is
also positive, since for . Hence,
and we can conclude that the algebraic connectivity is an in-
creasing and convex function of for , where

.
We can now compute the first- and second-order derivatives

of the energy function with respect to . We get

and, substituting the corresponding expressions, the extremal
points can be obtained by solving the following nonlinear
equation:

with and
. Furthermore, the second derivative of is

given by the equation shown at the bottom of the page. In Fig. 9,
we report as a function of , for different values of .
From Fig. 9, we can check that the second derivative is always
positive in the range of interest. This verifies that is in-
deed a convex function of defined on the compact convex set

. As a consequence, we can state that there
is always at least a radius that globally minimizes the energy
consumption in a RGG.
Numerical examples. In Fig. 10, we compare the value of
obtained by our theoretical approach and by simulation, for var-
ious values of the path loss exponent, . The results
are averaged over 100 independent realizations of random geo-
metric graphs composed of nodes. For each , the pair
of radius and energy providing minimum energy consumption is
indicated by a circle (simulation) or a star (theory). We observe
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Fig. 9. Second derivative of the energy versus the transmission radius for sev-
eral values of .

Fig. 10. Global energy consumption versus transmission radius for an RGG;
theoretical values (solid) and simulation (dashed).

that the theoretical derivations provide a very good prediction
of the performance achieved by simulation. Furthermore, for
each , there is a coverage radius value that minimizes energy
consumption.

The optimal values of the coverage radius as a function of ,
as predicted by our theoretical derivations or by simulation, are
reported in Fig. 11. From this figure, we observe that there is
a clear transition from the low power attenuation regime (i.e.,

), where the optimal radius tends to make the network
fully connected, as opposed to the strong attenuation situation

, where the network is minimally connected. This
means that in the low attenuation case, minimizing convergence
time is more important than minimizing power consumption.

Fig. 11. Optimal transmission radius versus .

Fig. 12. Global energy consumption versus per node transmit power for an
RGG; theoretical values (solid) and simulation (dashed).

Conversely, in the large attenuation case, it is more important to
minimize power consumption, by limiting the number of links
as much as possible, compatibly with the constraint of ensuring
connectivity.

Fig. 12 shows the average energy consumption versus the per
node transmit power , under the same settings of Fig. 10. The
circles (simulation) and the stars (theory) represent, again, the
values of that minimize energy consumption, for each . It
can verified the existence of an optimal transmit power value
minimizing the energy consumption.

Finally, Fig. 13 shows the optimal per node power versus .
For low values of , the transmit power increases with because
it must cope with higher attenuations to guarantee connectivity.
Conversely, for large values of , the optimal power decreases
with because, in such a case, it is more beneficial to limit



	  	
34
SARDELLITTI et al.: MINIMUM ENERGY CONSUMPTION IN CONSENSUS NETWORKS 395

Fig. 13. Optimal per node transmit power versus .

the number of links, until the minimum power guaranteeing the
connectivity constraint is reached.

C. Random Topologies versus Uniformly Spaced Grids

Finally, it is interesting to compare the energy consumption
achievable with a random geometric graph and a deterministic
grid. In the deterministic case, we may also distinguish between
a graph with nodes scattered arbitrarily in a given area, but with
positions known, and a regular uniform grid, where the points
are located over a rectangular grid.

1) Eigenvalues of a Planar Uniform Grid: We start by de-
riving the algebraic connectivity of a square grid whose nodes
are uniformly spaced within a unit square, at a distance

. To avoid undesired border effects, we consider
the wrapping of the unit square in order to form a toroidal sur-
face. Each node is assumed to have a link with the neighboring
nodes only if they are at a distance less than a coverage radius

, that depends on the transmit power , as with geometric
graphs. In Appendix A, we derive a closed form expression for
the network degree and for the algebraic connectivity [see, e.g.,
(45)–(48)].

A numerical check of our derivations is reported in Fig. 14,
where we show the numerical value of , obtained through
the eigendecomposition of , and the value given in (48), for dif-
ferent values of . From Fig. 14, we can see a perfect agreement
between our closed form expression and the numerical results.
Notice, in particular, the sharp transition behavior: the eigen-
values tend to or 0 depending on whether the transmit power
is above or below a threshold; further, the threshold increases
with .

In Fig. 15, we compare the algebraic connectivity of the rect-
angular grid, given by (48), with the theoretical value obtained
for the random geometric graph, given in (30), assuming the
same node density, over the same toroidal surface. As shown in
previous works, see, e.g., [4], RGGs tend to behave asymptoti-
cally as a regular graph. The result shown in Fig. 15 is a further

Fig. 14. Network algebraic connectivity versus per node transmit power for
several values of the path loss coefficient.

Fig. 15. Algebraic connectivity of random geometric graph and rectangular
grid versus transmission radius.

confirmation of this property. In the same figure, we also re-
port simulation results for the algebraic connectivity, obtained
by averaging over 100 independent realizations of a RGG. We
can check, once again, the good agreement between theory and
simulation.

Finally, in Fig. 16 we compare the energy consumption ob-
tained assuming full a priori knowledge of the nodes’ locations
or no knowledge at all. In the first case, the topology and the
power allocation over each link are optimized according to the
method illustrated in Section IV. The optimal values, for each

, are indicated by colored dots. In the second case, we report
(solid line) the energy consumption versus the average power,
assuming that all nodes transmit with the same power (since they
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Fig. 16. Average network energy consumption versus average network power.

do not have any prior information about the other nodes posi-
tions). To make a fair comparison between the two cases, we
consider in both cases the sum of the powers associated with
each active link. This means that, in the second case, the energy
consumption is measured, for every common transmit power ,

as , where denotes the number of neigh-
bors of node . The results shown in Fig. 16 have been obtained
by averaging the results obtained in the two settings over the
same set of 100 independent random deployments of
nodes, uniformly distributed over the unit square.

From Fig. 16 we can see that, as expected, the method as-
suming perfect a priori knowledge of the node positions (in the
figure denoted as ) is indeed able to achieve better per-
formance than the other method , as it is able to take ad-
vantage of the a priori knowledge. The optimal average power
is the result of a tradeoff between transmit power and conver-
gence time, and always depends on the path loss exponent.

VI. CONCLUSION

In this paper we have addressed the problem of finding the
network topology that minimizes the energy consumption nec-
essary to achieve consensus in a WSN. Assuming a simple flat
fading propagation model, we have studied two main network
models: 1) arbitrary networks, where the nodes are arbitrarily lo-
cated, but with known positions, and 2) a random model, where
the positions are not known a priori, but are modeled as random
variables. In the first case, we have shown how to optimize the
network topology and the power allocated to each active link
in order to minimize the total energy necessary to achieve con-
sensus within a prescribed accuracy. Topology optimization is,
in general, a combinatorial problem and hence computationally
demanding. To simplify the solution, we introduced a relaxation
step that enabled us to reformulate the energy minimization

problem as a convex-concave fractional program. This alterna-
tive formulation can be cast as an equivalent parametric convex
problem, which enables efficient solutions. The link weights re-
sulting from the solution of the convex problem must then be
thresholded to find out the network topology. We have shown
through numerical results that the thresholding operation may
yield a considerable reduction of the number of active links, yet
with very limited effect on performance.

In our deterministic setting, we assumed point-to-point links
and we optimized the power over each link. In practice, a con-
sensus algorithm running over a wireless network could ben-
efit from the broadcast channel. Deciding between broadcast or
one-to-one links entails a proper choice of the medium access
strategy, to establish in which time slot each node has to listen
to which broadcaster.

Conversely, in the random network case, lacking any infor-
mation about the internode distances, we assumed a broadcast
communication strategy. In such a case, the network topology
is modeled as a random geometric graph. We have derived
closed form expressions, albeit valid only asymptotically, for
the algebraic connectivity, assuming a common transmit power.
Then, building on these expressions, we have shown that the
energy consumption is a convex function of the coverage radius.
We have also shown that a random geometric graph performs,
asymptotically, as a regular graph built over a rectangular grid.
This confirms previous results, although now in the context of
energy minimization over consensus networks.

Finally, we have compared the performance achievable with
arbitrary and random graphs. Clearly, the knowledge of the
node locations allows better power allocation, that translates
into lower energy consumption to achieve consensus. However,
in practice there is a price associated with the knowledge of
node location. This knowledge requires the acquisition of
the node positions first and then a centralized optimization.
Conversely, the random approach can be followed also in a
decentralized fashion, with only minimal information about
some global parameters like number of nodes and area covered
by the network, and it does not need any extra hardware or
computation to acquire the nodes’ locations.

In this paper, we have assumed a simple flat fading channel
model, whose effect is only to introduce attenuation and su-
perimpose noise. The simple model captures the essence of the
problem and keeps the overall problem complexity under con-
trol. However, looking at potential applications, it would be
interesting to generalize the approach to the case where the
channel model is more complicated. Furthermore, the network
topology has been assumed to be static. However, a dynamic
topology, possibly adapted to the consensus state, might pro-
vide better performance.

APPENDIX A

In this section, we derive an analytical expression for the
eigenvalues of the adjacency matrix of a rectangular grid over
a unit torus, as a function of the coverage radius . We as-
sume, for simplicity that the number of nodes is a square
number, i.e., , with integer. We number the rows of
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the grid, 1 to , going from bottom to top. The matrix
can be expressed in a cyclic block form, as

...
...

...
...

...
...

where each block , for , is an
circulant matrix. In particular, the block is the adjacency
matrix between the nodes lying on the same row of the grid,
starting from the leftmost node and proceeding along the row.

represents the adjacency matrix between the nodes of row
and the nodes lying on the th row, for ,
and on the th row for .
The toroidal structure, used to avoid border effects, reflects into
the cyclic structure of , so that we have if

We also note that is a block circulant matrix with circulant
blocks (BCCB). Since each block for is
an -dimensional circulant matrix, the eigenvalues of
admit the following decomposition

with

...
...

...
...

...

where is a diagonal matrix whose en-
tries are the eigenvalues of , i.e., the discrete Fourier trans-
form (DFT) of the first row of . Hence, the matrix admits
the following diagonalization:

where denotes the Kronecker product and

with . The entries of the
matrix can be also expressed, after a few algebraic manipu-
lations, as

(37)

for and the coefficient is th entry
of the first row of for . Equivalently, (37)
can be seen as the two-dimensional DFT of a matrix whose
rows are given by for

, applying the 1-DFT to the rows and then to the columns of .
In general, for a regular grid where each node has degree ,

the algebraic connectivity can be expressed as

(38)

where the coefficients can be expressed as follows. Let
denote the step function, i.e., for and zero

otherwise. For odd, we have

(39)

and

(40)

and

(41)

Finally for .
Similarly, in the case of even, we have

(42)

(43)

(44)

with if .
Finally, we can derive analytical expressions of the network

degree and of the algebraic connectivity for odd as

(45)

and

(46)
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and for even

(47)

and

(48)

For example, in the case where , i.e., assuming a
regular grid of degree , we obtain

(49)

while is a circulant matrix whose first row is the -di-
mensional vector . Then, the eigenvalues
are given by and applying the
formula in (37) the eigenvalues of are

for .
The second largest eigenvalue of is obtained for and

and is given by . Thus
the eigenvalues of the Laplacian matrix can be expressed as

and the algebraic connectivity of the
network is given by .
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